Ergodic averages with deterministic weights

نویسندگان

  • Fabien Durand
  • Dominique Schneider
چکیده

i.e., there exists a constant C such that SN(θ, u) ≤ CN . We define δ(θ, u) to be the infimum of the δ satisfying H1 for θ and u. About H1, in the case where θ takes its values in U (the set of complex numbers of modulus 1), it is clear that for all sequences θ and u, δ(θ, u) is smaller than or equal to 1 and it is well-known (see [Ka] for example) that it is greater than or equal to 1/2. Few explicit sequences θ are known to have δ(θ, u) strictly smaller than 1. When uk = k, for all k ∈ IN, we know [Ru, Sh] that for the Rudin-Shapiro sequence (and its generalizations [AL, MT]) we have δ(θ, u) = 1/2. For the Thue-Morse sequence δ(θ, u) = (log 3)/(log 4) [G]. When θ is a q-multiplicative sequence we will give a way to construct sequences fulfilling H1. When u is a subsequence of IN we will also give some examples of sequences θ satisfying H1. More attention will be payed to the special case uk = k + vk, k ∈ IN, where v = (vk; k ∈ IN) is non-decreasing with vk = O(k), ε < 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of weighted polynomial multiple ergodic averages

In this article we study weighted polynomial multiple ergodic averages. A sequence of weights is called universally good if any polynomial multiple ergodic average with this sequence of weights converges in L. We find a necessary condition and show that for any bounded measurable function φ on an ergodic system, the sequence φ(Tnx) is universally good for almost every x. The linear case was cov...

متن کامل

Weighted Ergodic Theorems Along Subsequences of Density Zero

We consider subsequence versions of weighted ergodic theorems, and show that for a wide class of subsequences along which a.e. convergence of Cesaro averages has been established, we also have a.e. convergence for the subsequence Cesaro weighted averages, when the weights are obtained from uniform sequences produced by a connected apparatus.

متن کامل

Uniform Ergodic Theorems for Dynamical Systems Under VC Entropy Conditions

The classic limit theorems of Vapnik and Chervonenkis [27,28] show that if a function class F satisfies a random entropy condition, then the strong law of large numbers holds uniformly over F . In this paper we show that an analogous weighted entropy condition implies that Birkhoff’s pointwise ergodic theorem holds uniformly over F . In this way we obtain a variety of uniform ergodic theorems f...

متن کامل

Convergence of Multiple Ergodic Averages for Some Commuting Transformations

We prove the L convergence for the linear multiple ergodic averages of commuting transformations T1, . . . , Tl, assuming that each map Ti and each pair TiT −1 j is ergodic for i 6= j. The limiting behavior of such averages is controlled by a particular factor, which is an inverse limit of nilsystems. As a corollary we show that the limiting behavior of linear multiple ergodic averages is the s...

متن کامل

Probability ON ERGODIC TWO - ARMED BANDITS

A device has two arms with unknown deterministic payoffs, and the aim is to asymptotically identify the best one without spending too much time on the other. The Narendra algorithm offers a stochastic procedure to this end. We show under weak ergodic assumptions on these deterministic payoffs that the procedure eventually chooses the best arm (i.e. with greatest Cesaro limit) with probability o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008